INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 5865-5892

Isotropic damage model with different tensile-compressive
response for brittle materials

A. Brencich, L. Gambarotta *

Department of Structural and Geotechnical Engineering, University of Genova, via Montallegro 1, 16145 Genova, Italy
Received 22 May 2000; in revised form 11 October 2000

Dedicated to Prof. Giovanni Alpa for his 60th birthday

Abstract

Incremental constitutive equations for brittle materials are formulated on the grounds of a frictional microcracked
elastic model. The hypothesis of isotropic damage and the description of normal and tangential contact tractions on the
crack faces by means of two second-order tensors provide a constitutive model with a reduced number of internal
variables. The evolution equations of the latter ones are deduced from frictional and damage limit states and corre-
sponding flow rules, from which the different behaviour to tensile and compressive stress states and dissipation at
constant damage are represented. The model response is analysed for different stress states and limit strength domains
are derived for monotonically increasing biaxial and triaxial stress states. Comparisons of the theoretical results with
experimental data from literature related to concrete and cast-iron corroborate the proposed approach. © 2001 Elsevier
Science Ltd. All rights reserved.

Keywords: Brittle materials; Damage model; Constitutive equations; Limit strength domains

1. Introduction

Constitutive modelling of brittle materials implies different problems, among which the description of
the different response to tensile, compressive and mixed stress states, which have been tackled by means of
either phenomenological approaches, mainly based on experimental grounds, or micromechanical de-
scriptions of the material structure.

Phenomenological models, involving a limited number of internal variables, have been derived from the
plasticity theory (Chen, 1982; Hsieh et al., 1982; Pietruszczak et al., 1988; Etse and Willam, 1995; Lee and
Willam, 1997; Winnicki and Cichon, 1998) and from the damage theory (Lemaitre, 1992; Krajcinovic,
1996). In the frame of Continuum Damage Mechanics, material degradation is represented at different
levels of detail by scalar, vectorial and tensorial variables for isotropic and anisotropic formulations,
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respectively. Moreover, the different tensile-compressive response and the dissipation phenomena at con-
stant damage have been described by means of the concept of positive and negative projections of stress and
strain tensors (Ortiz, 1985; Chaboche, 1992, 1993; Lubarda et al., 1994; Hansen and Schreyer, 1995) and by
coupled damage plasticity models (Lubliner et al., 1989; Yazdani and Schreyer, 1988, 1990; Abu-Lebdeh
and Voyiadjis, 1993).

A deeper insight and representation of these phenomena may be given by the micromechanical models
based on a description of the meso-structure as a population of microcracks embedded in an elastic matrix
(Kachanov, 1982; Bazant and Prat, 1988; Fanella and Krajcinovic, 1988; Nemat-Nasser and Obata, 1988
Gambarotta and Lagomarsino, 1993; Prat and Bazant, 1997; Basista and Gross, 1998 Lawn and Marshall,
1998). A possible formulation assumes non-interacting plane microcracks gathered into sets of selected
orientations, implying the damage representation to be based on a proper distribution of axial vectors. In
this way the unilateral frictional mechanisms induced by compressive stress states on crack faces may be
easily taken into account, so providing a direct interpretation to the different response to tensile and
compressive stress states, load induced anisotropy and energy dissipation at constant damage (Gambarotta
and Lagomarsino, 1993). On the other hand, the main drawback of these models consists of the high
number of internal variables involved and the related computational difficulties. As a consequence, some
attempts have been made to formulate constitutive models characterised by a limited number of internal
variables and based on a micromechanical ground (Krajcinovic et al., 1991; Halm and Dragon, 1998).

In the present paper a damage model for brittle materials with a limited number of internal variables is
proposed, developed on the basis of the model by Gambarotta and Lagomarsino (1993). Damage is as-
sumed to be isotropic, i.e. independent of the crack orientation, and the unilateral frictional conditions on
the crack faces are considered on the average. This allows damage to be represented by a scalar variable and
the crack opening/sliding effects by two second-order tensors related to the overall normal and tangential
tractions on the crack faces. The evolution of the internal variables are ruled by two limit conditions
concerning damage propagation and an average sliding rule of Drucker—Prager type (Drucker and Prager,
1952). Constitutive equations are derived in incremental form and limit strength domains are obtained. The
model response is discussed with reference to relevant stress states and the limit strength domains for two
and three-axial stress states are discussed and compared with experimental data from literature. Even
though the validity of the proposed model is limited by the assumption of isotropic damage, nevertheless
the present approach could be useful for deriving constitutive equations for materials undergoing aniso-
tropic damage as well. An example can be found in Brencich and Gambarotta (1998) where anisotropic
damage of frictionless microcracked elastic solids is considered.

2. Isotropic damage model

Brittle and quasi-brittle materials are commonly modelled as microcracked solids in which damage may
be described through the propagation of plane cracks embedded in an elastic matrix. Following the ap-
proach by Gambarotta and Lagomarsino (1993), the constitutive equation may be expressed by defining
the mean strain E tensor as the sum of the mean strain in the elastic matrix and the contributions due to the
displacement discontinuities across the crack faces:

1
E:KT+E/[8n®n+sym(y®n)]dQ, (1)
Q

where K is the fourth-order elastic compliance tensor of the matrix and T is the mean stress tensor; ¢ and y
are, respectively, the normal extension and the tangential sliding vector related to the subset of microcracks
with normal contained inside the neighbourhood of the unit vector n with amplitude measured by the
infinitesimal solid angle d©2 on the unit hemisphere Q of all orientations.
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Under the hypothesis of non-interacting and self-similar propagating cracks, ¢ and y can be expressed as
functions of the resolved stresses ¢ = n-Tn and t = (I — n ® n)Tn on the n-plane and of the normal and
tangential components p and f of the contact tractions on the crack faces as follows:

e =c,’(c — p), (2a)

¥ =co(t—f), (2b)

where ¢, and ¢, can be regarded as compliance parameters related to microcracks and the ratio o = a/a,
between the actual crack average size ¢ and the original one a, as the damage variable of the n-oriented
plane. According to this approach, o, p and f play the role of internal variables related to the orientation n.
If dilatancy is neglected during the sliding on compressed planes, the unilateral contact between the crack
faces may be expressed in terms of a linear complementarity problem (LCP) for ¢ and p:

=20, p=0, pe=0 A3)

from which, together with definition (2a), it turns out that the normal contact traction p only depends on
the stress tensor T in terms of the McAuley operator as follows:

p=—(-a). 4)

Once the dependence of the internal variables o and f on the load history is known, the mean strain
tensor E can be evaluated by substituting Egs. (2a) and (2b) into Eq. (1):

1 1
E:KT+—/cna3(a—p)n®nd9+—/c,cx3sym[(t—f)®n]dQ. (5)
21 Jo 21 Jo

Eq. (5) points out that the contributions to the mean strain associated to the direction n are due both to the
effective normal (¢ — p) and shear (t — f) tractions acting on the n-oriented plane, here also called damage
plane.

Computation of the mean strain components from Eq. (5) needs the integration over the unit hemisphere
of all orientations €2, that can be approximated by the sum of the contributions related to a discrete number
of orientations n. The main limit of this description is given by the large number of internal variables that
have to be managed and recorded, so implying an extraordinary computational effort.

In the following, reference is made to materials that are isotropic at their natural state, e.g. the inelastic
compliance coefficients ¢, and ¢, and the initial crack length a, take the same value at every orientation n.
Moreover, damage is assumed to be isotropic in the whole deformation process assuming the same value
for the damage variable o on every damage plane.

As a consequence, the additional strain due to microcracks is represented by two contributions, the first
one due to the extensions

E =c,’ / (6 — p)n®@ndQ = ¢,o’'(H, T — P) (6a)
Q
and the second one related to the slidings:
E =co’ / sym[(t — f) ® n]dQ = &’ (HtT - F) (6b)
Q
on the crack planes. These definitions imply the compliance coefficients to be replaced by:
2mce, . 2mc
Ch = 3 9 Ct = 3 t? (73, b)

and the second-order tensors F' and P, and the fourth-order tensors H, and H, defined as follows:
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=— Q
o pr“®"d , (7¢c)
;3
F :—/sym(f®n)d9, (7d)
21 Jo
HT—i/ n®ndQ HT—i sym(t®n)dQ (7e,f)
n _21_[ QO- ’ t _211: 0 Yy ) ’

where Q" is the set of compressed planes @~ = {n| |n| = 1,n- Tn < 0}.

The symmetric second-order tensors P and F' may be interpreted as the average effects on all the ori-
entations of the normal and tangential contact tractions; moreover it can be proved that F' is traceless and
tr P < 0. Correspondingly to the hypothesis of isotropic damage and in order to avoid the description of the
frictional tractions f during the loading process, the definition of Eq. (7d) cannot be considered effective.
This assumption implies the alternative choice of the tensor F’ as an internal variable representative of the
average frictional tractions.

The fourth-order tensors H, and H, are symmetric and isotropic, with components given as:

3
(Hn)z/lm - E /Qn,-njnlnm dQ, (8&)
3 -
(Ht)ijlm = g o (55'"”/”/ + 5!'/”'"”] + 5/""”1”!' + bjl”mni) dQ - (Hn)ijlm7 (8b)
moreover, by definition (7d), it results tr (H,T) = 0. By integration of Eq. (7e,f) one obtains:
2 3 2
HT=Z(T+=pl)|==T |
5( +2p> sT +plL (%a)
HT = %(T —pl) = %T’, (9b)

being p = (tr'T)/3 the hydrostatic pressure and T’ the deviatoric stress tensor, respectively.

When triaxial compressive stress states are applied, the strain contribution E; due to crack opening
vanishes and from Eq. (6a) it results P = H, T. On the other hand, under triaxial tensile stresses the normal
contact traction vanishes at every orientation and from Eq. (7c) it follows that P = 0. Finally, for arbitrary
stress states, the tensor P is obtained simply carrying out integration (7c). Once the global friction tensor F’
is given, the inelastic strain due to sliding becomes independent of the hydrostatic component of the stress
tensor T; in fact in Eq. (9b) this component does not affect the linear transformation represented by tensor
H,. For this reason Eq. (6b) can be equivalently rewritten as:

E =& (HT —F).
By defining the new tensors P* and F* as follows:
P*=H_,'P =3P - LurP)I, (10a)
F’ = H'F =3F, (10b)
the additional strains can be written in a form similar to Egs. (2a) and (2b):

E' = c,’H, (T — P*), (11a)
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E = co’(T — FY), (11b)

where ¢, = 3/5¢,. Tensors P* and F* are given the same physical meaning as tensors P and F': for generic
stress states tr P* = trP and tr F = trF’' = 0; in the case of triaxial compressive stress states tensors P* and
T coincide, while in the case of triaxial tensile stress states it follows P* = 0. The definitions provided by
Egs. (11a) and (11b) allow the constitutive equation to be expressed in terms of scalar and tensor entities:

E = KT + ¢, H, (T — P*) + ¢ (T' — F”). (12)

To complete the general description of the model, it is necessary to introduce the power & expended in
the dissipative mechanisms:

9=T-E +T-E. (13)
The first term of the sum in Eq. (13) can be rewritten making use of the identity:
T-E =(T-P)-E +P -E, (14)

and noting that Eq. (11a) can be used to obtain:

. 1
(T—P")-E = %cnaz(T — P Hy(T = P)i+ e, (T P7) - Hy(T— P). (15)

The second term on the right-hand side of Eq. (15) represents the recoverable power of the mechanism
during the deformation process and is vanishing in a closed process, so that the power expended in the
opening mechanisms gets the following form:

T-E; =P - E; +3c,0?[(T — P*) - Hy(T — P)]a (16)

Analogous considerations allow the computation of the power expended in the sliding inelastic mecha-
nisms, obtaining the general form:

=P E +F" E +VY4 (17)

]

=30 [2can —P [ +eptr’(T = P) + 5¢,|T — F*’|2]

in which the variable

Y =32 [cn(T —P") - Hy(T—P") +¢|T - F’
(18)

is introduced and represents the energy release rate corresponding to the infinitesimal damage evolution 4.
Eq. (17) points out the tensors P* and F* and the scalar Y as variables conjugated to the strains E; and E;
and to the damage variable a.

3. Evolution equations

The different response under tensile and compressive stresses is considered in this section both in terms of
evolution equations of the internal variables and the stress—strain relations and in terms of the limit states
for the elastic response and for the limit strength.
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3.1. Open microcracks

In the case of open cracks on every orientation (p = 0 Vn) the stress field is a tensile one (P* = 0) and no
frictional sliding (F* = 0) can be expected. Following an Z-curve approach, propagation (¢ > 0) is as-
sumed to take place when the strain energy release Y equals the damage resistance function #(«) (Ouyang
et al., 1990; Krajcinovic, 1996). The admissible states are therefore characterised by the following condition:

&4 =Y(a,T) — () <0, (19)

where (o) is a monotonically increasing function of a € (1,00), with Z(x = 1) = 0, that represents the
overall measure of the material fracture toughness (Ouyang et al., 1990), in the sense of an average value
over all the orientations n.

When condition (19) holds as a strict inequality, the resistance function overcomes the strain energy
release and no damage evolution can take place. A limit state is given by Eq. (19) holding as an equality; in
this case the resistance (o) is equal to Y(«, T) and two different evolutions are possible in the loading
process: (a) elastic unloading ((1'5(1 < 0) that is again described by Eq. (19) as an inequality and (b) damage
evolution (¢4 = 0 and & > 0) which keeps active the limit condition @4 = 0. In both cases the damage rate
is obtained as the solution of the LCP:

@y<0, =0, Pga=0. (20)
Recalling Egs. (18) and (19), the first term of Eq. (20) is re-written in the form:
. . . o2 -Y
ch::v—do'z:3oc2[ch~HnT+ctT’-T’]—%o’cgo. (21)
o

An interpretation of Egs. (20) and (21) is given in Fig. 1 by analysing the different cases corresponding to
the evolution from a given status and depending on the damage resistance function ().

(1) Stable response d > 0: In this case 0 /0o > 0Y /0« and crack propagation is stable and the solution
is unique:

§>0 = o= p >0 = damage evolution,

§<0 = a=0 = elastic unloading.

‘ Y(«,T)
R(a) Y(a,T,) Y(a,Th)

R(x)

d>0 | d<0 o]
d=0

Fig. 1. Geometric representation of the strain energy release Y(o, T) and resistance 2 («) functions.
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(IT) Strain softening d < 0: Crack propagation turns to be unstable and stress states with § > 0 are not
admissible. In the remaining cases § <0 the solution is not unique, since both unloading and damage
evolution are possible:

§s<0 = oc:2>() = damage evolution,

§<0 = a=0 = elastic unloading.

(ITT) Limit point d = 0: The separation between the two stages of stable and unstable damage evolution
defines the limit point for s, and corresponds to the peak load when the strain energy release equals the
material resistance and the damage variable o attains a critical value o..

The three preceding cases are given a geometric representation in Fig. 2, in terms of a stress damage and
a stress—strain curve for a strain softening material, giving a physical explanation to problem (20).

As an example, let us consider the case of uniaxial tensile stress represented by the tensor T = g(e ® e).
At the peak load the damage variable gets the critical value o, and must satisfy all the three conditions:

By = 122 (9¢y + 10¢)0” — R (o) = 0, (22a)
Gy = § — dit = 1229y + 100)06 — [ (5) — 119y + 10¢)0% |5 = 0, (22b)
d =R (a) — toc(9cy + 10c)0” = 0, (22¢)

where 2/ (o) = (0/0u),_, .
The comparison of Egs. (22a) and (22c) shows that, at the critical condition corresponding to the peak
load, the damage o, must satisfy the following equation:
2R
R (o) = 2% (%) (23)

O

from which the tensile uniaxial strength is deduced:

1022(2t,)
I =2 (9¢, + 10¢,) (24)

Condition (23) holds also for a generic triaxial stress state satisfying conditions P = 0 and F*’ = 0, so
that, in the frame of the present model, it turns out to be a general characteristic of the tensile critical stress

d>0

(2
\
d=0 d=0

Fig. 2. Geometric representation of problem (20): (a) stress-damage and (b) stress—strain diagrams.
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field. For a generic triaxial tensile loading, the critical condition corresponding to the peak strength is
obtained imposing &3 = &3 = d = 0 and depends on the stress state:

10
2
Son 2 0) (25)

(2+5p)[T +3(3 = 5p)p* = (2+ 5p)|T| + 15p* =

where p is the hydrostatic stress component and p represents the ratio between the tangential and normal
compliances p = ¢(/cy.
The biaxial tensile strength orr and the triaxial one orrr are then obtained, respectively:

_ 5'@@‘0) o (9 + 10p)
e \/Cndi( 12+5p) \/(24 +10p)°" (26a)

 2R(x)  [9+10p
orTT = Sl 45 T (26b)

3.2. Partially closed or closed microcracks

When a compressive stress acts on some orientation n, the limit damage condition @4 = Y(o,
T,P",F") — (o) <0, must be considered simultaneously with a sliding rule related to contact and fric-
tional tractions. In this case tensor P* does not vanish and tr P* < 0 is proportional to the average com-
pressive stress on the damage planes. As a consequence, frictional sliding on compressed crack faces can
take place according to a limit condition depending on the frictional tractions f and on the normal stress o.
In the frame of the present model, the limit condition is given in terms of the global friction tensor F* and
the average compressive stress tr P*. In fact, the overall friction limit state, ruling the evolution of the
overall sliding, should take into account on the average the local Coulomb frictional condition
@, = |f| + up < 0 related to the n-oriented crack plane. Moreover, the overall sliding rule has to be defined
in accordance with the local sliding rule ¥ = vA(1 = 0), being the unit sliding vector v = f/|f|, and without
considering any dilatancy effect (¢ = 0). Since in the present analysis the description of the contact and
frictional tractions is provided only in average form through the tensor P* and F* respectively, the limit
sliding condition is assumed as follows:

Oy(F", P") = f([F"]) + g(trP") <0, ¢(0) =0, f(0) =0, f(e)>0. (27)

This form of the sliding limit condition allows the representation of frictional dissipative mechanisms
under compressive stress states only; for tensile dominating stress states (tr P* = 0) Eq. (27) implies F* = 0,
so that damage can be modelled in the standard form of Section 3.1.

The admissibility condition (27) needs a flow rule to be defined providing the traceless strain increment:

E =Vi Ji>0, (28a,b)
where
_ -1 a(I)s
V=l 5 (28¢)

and 1 is a non-negative multiplier. Thus, when compression acts on some plane, frictional and damage
limits must be considered:

<0, &, <0, (29a, b)
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while damage and flow rates at the limit states @4 = 0 and &; = 0, respectively, are given as solutions of the
LCPs:

Py<0, 6=0, P5=0, (30a—)
d;<0, =0, P=0, (30d-f)

providing the general expressions of the inelastic strain rates:
E = c,®Hy (T — P*) + 3¢, ’H (T — P,  E = Vi (31a,b)

The choice of functions &, needs to take into account the influence of the deviatoric and hydrostatic part
of the average friction internal forces. To this end, different choices can be made based on the similarities
with limit strength domains, ranging from the simple Drucker—Prager criterion (Drucker and Prager, 1952)
to the more elaborate five parameter model by Etse and Willam (1995), taking into account the effect of the
intermediate principal stress.

The simplest choice is based on a global limit function analogous to the Drucker—Prager limit state in the
case of vanishing cohesion:

@s _ F*/

+ utrP* <0, (32)

where the parameter u plays the role of a global friction coefficient. Here [F*| is assumed as a global
measure of the friction tensor and therefore makes the sliding condition (32) to represent an isotropic limit
state.

Making use of Eq. (11b), the limit sliding condition (32) takes the form:

&, — + utrP <0, (33)

1
T -—E
CloC:; ¢

moreover, since in this case P* £ 0, condition (19) becomes

3 . . 3 np
Dy = EcnaZ(T —P*) - H,(T-P") + e E{|" — 2(x) <0, (34)
and from Egs. (28c), (32) and (11b) it follows:
F 1 1
=— = (T -—FE T - —E'|.
V=i (T aw®) /T o -

According to the actual values of the variables at the initial state of the load step and to the applied stress
rate T, different evolutions, characterised by damage and/or sliding mechanisms, can be distinguished as
follows.

(1) The initial state is characterised by negative values of the limit functions @4 < 0 and @, < 0, so that
neither sliding nor damage growth take place; the strain rate is then

El =, H,(T-P"), E =0, ac|0;1), (36a,b)

where

P'=H,' 3 / pn@ndQ. (37)
TE Q*



5874 A. Brencich, L. Gambarotta | International Journal of Solids and Structures 38 (2001) 5865-5892

(2) The initial state is a sliding limit one @, = 0 but @4 < 0, so that no damage evolution takes place
(6. = 0) and the sliding rate 2 is obtained as solution of the LCP:

. |
= —— R/ s < )
b, 61“3) +14<0 (38a)
i=0, ®i=0, (38b,¢)
where
ty=V-T + utr(P). (39)

Two evolutions are possible:
(a) locking of sliding mechanisms

<0 = 1=0, (40a,b)
(b) sliding without damage
>0 = l=co't. (40c, d)

(3) When the initial state is a limit damage state @3 = 0 with no sliding allowed (@, < 0), only the strain
rate E; is obtained. In this case, that is characteristic of states with a relevant number of opened crack
planes (H,T # P*), the rate a is obtained as the solution of the LCP:

Qg =13 —da<0, a=0, @qa=0, (4la—c)
where
6
d =R () +—|E ? —3c,a(T — P*) - Hy(T — P¥), (42)
t
ta = 3¢, (T — P*) - Hy (T — PY). (43)

Different evolutions are possible, depending on the sign of d and on the rate #4. In analogy to the cases
considered in Section 3.1 (open microcracks) the response can be distinguished as follows:
(a) unloading

44<0 andd#0 = &=0, (44)
(b) damage without sliding
. g
== 4
o p > 0, (45)

which is possible either during the hardening phase iy > 0 and d > 0, or in the softening phase ¢y < 0 and
d < 0. It is worthwhile noting that a positive stress increment, leading to 74 > 0, cannot take place when the
peak load has been exceeded (d < 0).

The critical condition defined by a vanishing value for d represents a limit state, depending on the in-
elastic sliding strain E{, that marks the transition between the stable and the unstable model response under
stress control. When proportional loading cases are considered, starting from an unloaded initial state
where no inelastic tangential strain is present E{ = 0, the condition d = 0 together with the limit condition
(34) and (24) provide the limit strength criterion:

" o _ 9+ 10p
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(4) The two simultaneous conditions @; = @4 = 0 are attained at the initial state, so that the evolution of
the internal variables can be obtained as the solution of the LCP:

<'_Pd _ |4n an d{ lq < 4
Gy =l wliy iy s

ﬁ}w, Md@%%_q (47b.¢)

where
an = —d, (48a)
3 .
dip = dy = @V . Et7 (48b)
1
ay = —?, (480)

and %, d and {4 are defined, respectively, in Egs. (39), (42) and (43).
The solution of the LCP (47a) and (47b,¢) is unique as far as the matrix A is a P-matrix (Cottle et al.,
1992) which requires that

>0, detA=—d——_

co3 cod

>0, (49a,b)

E

the latter being the more restrictive. Four solutions are possible according to these conditions and to the
rates f; and 74. In particular, three of them have already been given in the previous subsections ((1) neither
sliding nor damage evolution; (2) sliding without damage; and (3) damage without sliding). The rates of the
internal variables in the fourth case, characterised by sliding and damage coupling, are obtained by Eq.
(47a) when holding as a strict equality @, = &4 = 0.

On the other hand, if condition det A < 0 occurs, multiple solutions are obtained for prescribed rates £
and {4, distinguished between damage-sliding evolution and locking with damage arrest. In this case it
follows that the model responses to prescribed stress rates are distinguished by different strain rates.

To clarify this aspect, proportional loading paths are considered. At the beginning of the load process
the limit conditions &, = &4 = 0 are attained and the subsequent load steps are selected in order to
maintain such limit stress states active. At the onset of sliding (E; = 0, « = 1), because of condition (33) and
definition (35), one obtains that tensors V, F* and T’ are coaxial; therefore in the subsequent load steps we
can assume E; = VA during the deformation process, so that V- E; = |E{|. Subsequently the condition
det A = 0 at the limit state becomes

2 3000(T = P*) - Hy(T = P*) = 0, (50)

3.
R () _Taém‘

where o stands for the damage value at the critical state. By comparing Eq. (50) with condition ¢4 =0
imposed to Eq. (34), one obtains Eq. (23) that provides, once the toughness function £ (e) is selected, the
damage entity o, at the critical state, independent of the stressing mode. Moreover, from condition (32) at
the limit state, it follows:

F*/

= —utrP”, (51)
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and therefore from the previous considerations:

T/
F’ = —utrP* . 52
T (52)
Substituting Eq. (52) into Eq. (11b), the inelastic strain is obtained:
* 3 / * T,
E =cu (T + utrP ’T") (53)

The critical state det A = 0 can be formulated in terms of the applied stress T by substituting in con-
dition (34), holding as a strict equality, the critical damage o, and the inelastic strain tensor E; by Eq. (53)
as follows:

2
AT — PP +103p — trP*) + p(|T/| + ,utrP*) =302, (54)

When compressive normal stresses are active on each plane it follows from definitions (4), (7c) and (10a)
that P*=T and the critical condition (54) takes the form of the criterion of Drucker—Prager (1952) as
follows:

. 3 1 2%(a.)
T R - )
| | 3up \/;OTTT /3 ol (55)

In the pre-peak phase the stress intensity is controlled by an increasing scalar variable, so that the rates
and {4 are proportional one to the other. By discussing the solutions of the LCP (47a) and (47b,c) in terms
of the data # and #4, it may be argued that the transition from positive values of det A to negative ones is
characterised by a maximum for the load control variable, so that conditions (54) and (55) can be assumed
as limit strength conditions for the model under dominant compressive stresses (trP* < 0).

By the limit state defined by equation (54) the uniaxial oc and biaxial occ compressive strengths as
functions of the model parameters are obtained as follows:

3 1
0c=—{\|=——F7=——"0TTT) (56a)
\/P\ﬂ/ —u

3 1
— - 56b
oce \/;\/2/ - 2/16TTT (56b)

from which an upper bound for the friction coefficient 1 < /1/6 is established. Finally, it is worth noting
that assumption (32) makes the model unable to predict the triaxial compressive strength, in partial accord
with the mechanical response exhibited by brittle concrete-like materials.

4. Model response

In order to provide a comprehensive description of the proposed model, the stress—strain response to
significant load paths and limit strength domains for bi and triaxial stress states needs to be derived. In this
paragraph the stress—strain response for uniaxial and biaxial stress states is discussed and extended to the
post-peak phase in order to provide a complete description of the model response; comparison to exper-
imental data is given up to the peak load, which is the limit for homogeneous damage phenomena and,
therefore, the limit of validity of the proposed model.
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Fig. 3. Model response to uniaxial tensile stress (¢, = 5 x 107> MPa™', p = 0.05, E = 3 x 10* MPa, u=0.2, Z(x) = a(«—1)"*/
(8 =B (a=0.1 MPa, b =1 x 1077)).

Let us first consider the model response to uniaxial tensile stress states. In this case it follows, from Egs.
(2a), (2b) and (4-7), that P* = 0 and F” = 0, since every crack plane is open and the damage variable «
grows according to the admissibility condition (19).

The uniaxial tensile response is represented in the diagram of Fig. 3, where ¢r stands for the deformation
(strain) corresponding to the critical state (o, o), the critical value being given by Eq. (23) once the an-
alytical form of the resistance function £ is assumed (deduced from Ouyang et al. (1990) for Fig. 3).

In the stable phase o increases its value from unity to the critical value o.; after the peak load is reached
the damage variable increases as well, while only in the unloading phase o attains a constant value (no
damage increase) and the response is linear elastic. In a further reloading phase the damage variable re-
mains constant up the point at which the unloading phase previously started (points A and B); from this
point on it will increase again.

The model allows no permanent strain since the cracks simply close whatever their length and opening
(load paths O—A-O and O-B-0). Once the load is completely removed (point O), reloading exhibits the last
apparent elastic modulus, that is to say path OA or OB in Fig. 3.

The uniaxial compressive response of the model is shown in Fig. 4 for both the stable and the softening
phase. During the loading phase (paths O-A and O-B of Fig. 4a) both tangential sliding on the crack

0‘ 1. 2. %

Fig. 4. Model response to uniaxial compressive stress: (a) monotonic loading and complete unloading; (b) partial unloading
(ca=5x 1073 MPa~!, p = 0.05, E =3 x 10* MPa, u=0.2, Z(x) = a(e — 1)"*/(a® — b)™* (a = 0.1 MPa, b =1 x 1077)).
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planes and crack growth take place. Since all crack planes are compressed and crack faces are closed, the
model response is independent on the parameter ¢,. The unloading phase (Fig. 4a), notwithstanding the
point (A or B) at which the load is reversed, exhibits two distinct phases: (a) on the paths A-A’ and B-B’
tangential sliding is locked by the frictional stresses on the crack faces, making the response that of the
elastic matrix; (b) when the normal stress on crack faces decreases, and friction is reduced, sliding is ac-
tivated by the elastic unloading of the matrix, so that the overall strain is due to the elastic contribution of
the matrix superimposed to the crack sliding contributions (paths A’-O and B’-O) and, again, the re-
covering of the entire tangential sliding makes the permanent strain to vanish in O. The stress drop from A
to A’, or from B to B’, can be evaluated from Eq. (32) holding as a strict equality:

Ao = 2u6/ (,1 + \/2—/3) (57)

where ¢ is the stress value at the unloading point. Finally, the reloading phase is linear because the damage
variable remains constant up to the skeleton curve.

Fig. 4b shows the model response for different loading—unloading-reloading paths. Path C-C’ shows
that there is no hysteretic dissipation if sliding of the crack faces is not reached due to only a partial relief of
the frictional stresses; on the contrary, if tangential sliding is partially recovered (path D-D’-E’) the dis-
sipation effect is due to the frictional sliding of the compressed cracks at constant damage.

In Fig. 5 the uniaxial response of loading—unloading compressive tests with increasing maximum stress
level in the stable phase (Maekawa and Okamura, 1983) is shown together with the simulation by the
present model assuming a toughness function of the type proposed by Ouyang et al. (1990). A good
agreement is found in general, but some points need to be emphasised. The assumption of isotropic damage
and a single #-curve damage limit condition do not allow descriptions of the load induced gradual acti-
vation of microcracks having different orientations with respect to the load axis. Experimental results point

C ] G/G( C

Fig. 5. Uniaxial compressive response: (a) experimental data (Maekawa and Okamura, 1983); (b) theoretical results (¢, = 5 x 1073
MPa~!, p = 0.05, E =3 x 10* MPa, v = 0.30, u = 0.15, 22(0)) = r(o. — 1)/, (r = 0.1 MPa, m = 2.6)).
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Fig. 6. Response of the model under biaxial compressive stresses: (a) o,—¢, and (b) g—¢, stress—strain response (¢, = 5 x 1073 MPa!,
p=005E=3x10* MPa, u =02, Z(z) = a(e— 1)"*/(o® —b)""? (a=0.1 MPa, b =1 x 1077)).

out a progressive evolution of the instantaneous compliance in the unloading phase as a consequence of the
sliding of the crack faces, while the permanent deformations are due to the presence of sliding mechanisms
at some orientation that do not correspond to the frictional model here assumed. On the contrary, in the
present model the sliding condition is referred to a single global mechanism excluding progressive sliding.
The model response to biaxial compressive stress states is summarised in Fig. 6 for different ratios a,/0;.
As pointed out by experimental evidences, the biaxial compressive strength is up to 60% higher than the
uniaxial one, while transverse compression reduces the limit strain in both the load directions; in the present
model this feature strongly depends on the friction coefficient u. Moreover, the model seems to be able of
representing the lateral strain of the material when one stress component prevails over the other and the
transition of the lateral strain from expansion to compression for nearly isotropic biaxial stress states.

5. Limit domains for biaxial stress states

On the basis of the results shown in Section 3, the biaxial limit strength domain is here obtained with
reference to tensile-tensile, tensile—compressive and compressive—compressive biaxial stress states (indi-
cated as tt, tc and cc respectively). The limit stresses are given in the following as functions of the constants
K, and K, characterising the monotonically increasing stress tensor T = g(K e; ® e + K,e; @ e,); besides
the model parameters (u, p), two non-dimensional parameters are introduced as f = 3, K; and y* = >, K2.

(1) Tensile—tensile stress states: K1 > 0, K, > 0,

oy = al OTTT = \/§ — U 150 oc (58)
32¢° + B7) + 50 (3¢ - ) 3 3207+ B) +5p(3¢° — )

(2) Tensile—compressive stress states: K| < 0, K, > 0,

O = 15 orTT = \/2— o o (59)
TN s+t V3T NP =P s+t

being
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(3) Compressive—compressive stress states: K| < 0, K, <0,

3 1 2 1

Eqgs. (58)—(60) give the analytical expression of the limit strength domain for a biaxial stress state and it
can be proved that these functions are continuous of class C? at the respective connections, which physically
represent the uniaxial tensile and compressive strengths. The typical shape of the domain is shown in Fig. 7
and compared with the limit domains obtained from the Rankine, Mohr—Coulomb and Drucker—Prager
criteria fitting the uniaxial tensile and compressive strength. It is worthwhile noting that the domain shape
depends on the two model parameters only, namely the friction coefficient u and the ratio p.

Figs. 8 and 9 represent a parametric description of the limit domains; in Fig. 8 the model parameter p is
fixed, while the global friction coefficient is given different values. The friction coefficient u provides an
increase of strength when considering compressive—compressive stress states; being the uniaxial compressive
strength oc the normalising quantity, also the non-dimensional tensile-compressive and tensile-tensile
strengths are indirectly affected by pu.

The alternative parametric representation obtained varying p and keeping p constant is given in Fig. 9; it
shows the influence of the ratio p only on the stress states characterised by tensile stresses at some ori-
entation. In the frame of the present model, all the cracks are closed in a fully compressive stress state so
that the normal compliance coefficient ¢,, related to crack openings, play no role in the mechanical response

Rankine

present model t

(¢) 1‘02 C: \
—
Or
S _0A Drucker-Prager
______ 1.
o6 O
[}
N
Q‘7°6
67
ov

Fig. 7. Biaxial limit strength domain (6c/or = 10, u = 0.2, p = 0.0461) compared with Rankine, Mohr—Coulomb and Drucker—Prager
surfaces.
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Fig. 9. Biaxial limit domains for varying p and fixed p.

of the model. This is pointed out in Eq. (60) where the limit strength for a general biaxial compressive stress
state turns out to be dependent on y only.
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Fig. 10. Biaxial limit domains for varying u and constant p(ac/or = 10).

Once the value of the ratio oc/or is given, one of the parameters p and u depends on the other. As-
suming the typical ratio oc/or = 10 representative of brittle materials, the limit domains for various u are
shown in Fig. 10.

The constitutive damage model herein proposed belongs to the class of three parameter models, being
defined by p, ¢ and a normalising quantity such as the uniaxial compressive strength. Since limit domains
are always referenced to in a non-dimensional stress plane, the parameters that need to be determined are
limited only to p and g, that require an identification procedure to be established. When a complete set of
experimental data is available, e.g. in terms of principal stress components, the definition of the two pa-
rameters can be reduced to an approximation problem. Experimental data can be considered satisfactory if
they present number of samples in all the three sectors (tensile-tensile, tensile—-compressive and compres-
sive—compressive stresses) large enough to carry out the approximation procedure. While the experimental
uncertainty is relatively limited for biaxial compressive stresses, it gets quite high figures when involving
tensile stresses, due to the weak tensile resistance of brittle and concrete-like materials and to technical
difficulties in reproducing tensile stress states in real specimens (Weigler and Becker, 1961; Kupfer et al.,
1969; Liu et al., 1972; Kupfer and Gerstle, 1973; Adenaes et al., 1977; Tasuji et al., 1978); for this reason the
fitting of the experimental data involving tensile components is somewhat more troublesome.

For the proposed model to be of practical interest, a simplified identification of the model parameters is
needed, based on few material parameters that can be easily obtained from standard experimental tests,
such as the uniaxial compressive and the biaxial compressive or uniaxial tensile strength. The proposed
model strictly needs only a couple of points to be given, so that we can imagine, in practice, to set up a
simplified identification technique that chooses the values for p and u so as to fit exactly the uniaxial and
biaxial compressive strengths. In the following part of this section, it will be showed that this simplified
technique is usually precise enough to describe the biaxial limit domains.

Fig. 11 shows the biaxial domain obtained through a rigorous approximation technique, bold lines, and
by means of a simplified identification approach, dashed lines, for two sets of experimental data on con-
crete (Weigler and Becker, 1961; Kupfer et al., 1969). It can be seen that a rigorous determination of the
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Fig. 11. Biaxial limit domain — data from Weigler and Becker (1961) and Kupfer et al. (1969).

parameters allows a rather good approximation of experimental data in the compression—compression and
tension—compression sectors, while material resistance for tensile stress states is significantly underesti-
mated. A rather complementary situation is found in the second case of simplified identification: pure
tensile limit stress states are reasonably well approximated, but tensile-compressive ones are quite over-
estimated. In both cases, anyway, the approximation for pure compressive stresses lies inside the range of
the experimental error.

Analogous considerations can be deduced from the comparison with the other experimental data re-
ported in Fig. 12 by Tasuji et al. (1978) and Nelissen (1972) for concrete and mortar, respectively. Fig. 13

G2
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Fig. 12. Biaxial limit domain — data from Tasuji et al. (1978) and Nelissen (1972).
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Fig. 13. Biaxial limit domain — data from Thienel and Rostasy (1995).

presents the limit domains obtained with a rigorous minimisation of the square error for concrete at dif-
ferent temperatures (Thienel and Rostasy, 1995).

The values attained by the two parameters are limited inside the range u € (0.04-0.17), while
p € (0-0.016); the limit domains obtained by a couple of experimental points are characterised by a ratio
between the uniaxial compressive and tensile strengths included inside the range (8-12), coherently with
experimental evidences.

The proposed model requires that the damage mechanisms of the material can be reduced to crack-like
defects propagating in a non-linear brittle matrix. Concrete and mortar meet these requirements, as well as
other brittle materials such as cast-iron. Fig. 14 shows the limit curves obtained on the basis of the results

G,
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# Coffin and Schenectady, 1950
5
&% # A
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-1 -‘5 1 ) } N —
- et o
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a Cornet and Grassi, 1955 /

Fig. 14. Biaxial limit domain for cast-iron — data from Coffin and Schenectady (1950) and Cornet and Grassi (1955).
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by Coffin and Schenectady (1950), that are again characterised by an overestimation of the tensile—com-
pressive limit stress states; the average fitting, anyway, is quite good. When the limit domain is fitted only in
some sectors of the stress plane, such as in the case for the data given in (Cornet and Grassi, 1955) of Fig.
14, the fitting of experimental data is rather good, but the limit function cannot be considered reliable
outside the range of values on which the fitting procedure relies.

6. Limit surfaces for triaxial stress states

Triaxial stress states are here represented in terms of the non-dimensional coordinates:

E=tr (T)/<\/§O'c> = \/gp/ac, (61a)
F= \/gz/ac = \/groct/ac, (61b)

0=1/3cos™ (\/2_7J3/2\/723>, (61c)

being J, and J; the second- and third-order scalar invariants of the deviatoric stress tensor T’, 7, the
octahedral tangential stress and oc the uniaxial compressive strength. The main features of the limit en-
velope, a curvilinear triple-symmetric cone, are represented on the tensile (0 =0°) and compressive
(0 = 60°) meridians and means of the deviatoric tracings at different levels of hydrostatic pressures.

Assuming the stress tensor as T = o(Kje; ® e + Kre; ® e, + Kze; ® €3), the maximum stresses, for
monotonically increasing stress paths, are given on the two meridians in Egs. (58)-(60) once the parameters
are redefined.

(1) Triaxial tensile stress state

Tensile meridian: K1 =1, K, =1, Kz > 1;

Compressive meridian: K| =1, K, =1, K5 € [0,1];

the limit strength is given by Eq. (59) with obvious generalisation of the symbols.
(2) Compressive—compressive—tensile stress state — tensile meridian

Ki=-1, KK=-1, K;3>0.
(3) Tensile—tensile-compressive stress state — compressive meridian
Ki=1 K,=1, K;<0.
The limit strength is given in both cases 2 and 3 by Eq. (59) once the parameters are redefined as

? 1 1
p=> Ko =) K. F:\/wz—ﬁ? {=—trP'=_trP,

* 1 * * 1 *
ﬂZZEZPf, (PZZ_EZKI'PW H:\/W2+77*2+2(P*27

while B, ¢* and I' are the same as defined for Egs. (58)—(60).
(4) Triaxial compressive stress state
Tensile meridian: K; = —1, K, = —1, K5 € [-1,0];
Compressive meridian: K, = —1, K, = -1, K3 < —1;

the limit strength is given by Eq. (60) with obvious generalisation of the symbols.
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Fig. 15. Triaxial limit domain on the tensile (0 = 0°) and compressive (6 = 60°) meridians compared with Rankine, Mohr-Coulomb
and Drucker—Prager surfaces.

Open cracks start to propagate when the limit condition (19) is attained at some orientation; otherwise
cracks retain their original length and the local and global response remains linear elastic. From this point
of view, the elastic limit under tensile stress states coincides with the failure limit. On compressed planes two
limit conditions need to be attained to get failure: condition (19) and the friction limit (27). As already
discussed in Section 3, there may be some stress state in which only one of these conditions is attained; on
compressed planes, therefore, the limit for the elastic response does not coincide with the failure limit.

Figs. 15 and 16 represent the C2-continuous failure envelope on the meridian plane and the envelope
traces on the deviatoric plane for different values of the hydrostatic pressure. The model is able of repre-
senting the asymmetric shape of the two meridians for low values of the hydrostatic pressures, that is to say
a higher resistance on the compressive meridian than on the tensile one; on the contrary, for triaxial
compressive stress states, the Drucker—Prager type limit condition for sliding, Eq. (55), is attained, which
corresponds to a circular cone in the space of principal stresses. The triple-symmetric cone section de-
forming in a circle for increasing values of the hydrostatic pressure is represented in Fig. 16.

bo

3

p =5e-2

increasing p

Fig. 16. Triaxial limit domain on the deviatoric plane for different values of the parameter &.
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Fig. 17. Triaxial limit domain on the &t plane for ¢ = 0 compared with Rankine, Mohr-Coulomb and Drucker-Prager surface traces.

In both Figs. 15 and 17 the traces of limit surface on tensile and compressive meridians are compared to
the Rankine, Mohr-Coulomb and Drucker—Prager curves fitting the uniaxial strengths (on the tensile
meridian the Mohr—Coulomb and Drucker—Prager surface traces coincide). Besides, in Fig. 15, also the
elastic domain is represented where the relevant points indicated as m-T, m-C, b-T and b-C stand for the
limit points for uniaxial and biaxial tension and compression respectively.

The stress states lying on the tensile and compressive meridian can be divided into three regions: (a) pure
compressive stress states, (b) mixed stress states with both tensile and compression components, and (c)
pure tensile states. The first two sections are nearly linear (exactly linear failure envelope for compressive
stress states) with a sudden change in slope in the points corresponding to the uniaxial m-C and biaxial b-C
compressive strengths (Fig. 15).

The analytical expressions given in the previous paragraph, Egs. (26a), (26b), (56a) and (56b), show that
only the limit stress for compressive stress states depends on the friction coefficient y; the parametric
representation of the failure surface on the meridian plane of Fig. 18 shows effects also on the tensile limit

increasing M

N

p =S5e-2
-4

o ¥

increasing M

Fig. 18. Triaxial limit domain on the meridian section for fixed p and varying p.
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Fig. 19. Triaxial limit domain on the meridian plane for fixed u and varying p: proportional loading path (1) inside the elastic domain
and (2) up to the failure surface.

strength because of the normalising quantity (uniaxial compressive strength). An increase of the friction
coefficient widens the failure cone in the full compressive stress states, as already conjectured from biaxial
limit surfaces. Finally, the model parameter p has been defined as the ratio between the tangential and
normal compliance, therefore it affects all the limit states in which some stress component is a tensile one,
(Fig. 19.) In the same (Fig. 19) two different proportional loading paths are represented: path (1) is
characterised by a low value of the tangential octahedral stress and remains inside the elastic domain; along
path (2) the octahedral tangential stress is some 50% of the hydrostatic pressure and gets to failure when it
intersects the failure domain.

Experimental data on triaxial strength of concrete-like materials point out, for low values of the hy-
drostatic pressure, a higher resistance on the compressive meridian than on the tensile one (Richard et al.,
1928; Bellamy, 1961; Gardner, 1969; Mills and Zimmermann, 1970; Launay and Gachon, 1971). For
compressive stress states this difference shrinks and the failure envelope tends to become a symmetric cone
around the hydrostatic axis.

Comparison of the failure surface predicted by the model with experimental data, Figs. 20 and 21 for
normal-strength concrete and Fig. 22 for high-strength concrete (Li and Ansari, 1999), points out a good
approximation on the compressive meridian. Being the model limit condition for compressive stress states
of a Drucker—Prager type, the failure surface is symmetrical for relevant hydrostatic compressions and,
therefore, the model underestimates the material strength on the compressive meridian. It is worthwhile
noting that the model fits quite well the failure envelope on the tensile meridian, with a precise prediction of
the slope change from mixed stress states to pure compressive ones.

It has to be said that the values of the friction coefficient u for triaxial limit domains are much higher
than the values for biaxial domains: this is because the hydrostatic pressure component is quite low in the
latter case, while triaxial tests are carried out for high values of the hydrostatic pressure, not less than half
the uniaxial strength.

7. Conclusions

The local damage model presented in the paper is derived from a micromechanical description of the
response of brittle materials and from some simplifying hypotheses aimed at reducing the number of in-



A. Brencich, L. Gambarotta | International Journal of Solids and Structures 38 (2001) 5865-5892 5889
i 7

M 025N p =5e-4

H=0.30

pn =0.20

A Richard et al. 1928

-4 2

vl

v Mills and Zimmermann 1970

p’ =0.20 1 _2

p=030 a

Fig. 20. Triaxial limit domain — data from Richard et al. (1928) and Mills and Zimmermann (1970).
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Fig. 21. Triaxial limit domain — data from Launay and Gachon (1971).

ternal variables. Damage is assumed to be isotropic as an overall measure of microcrack size and the effects
of unilateral and frictional microcrack mechanisms are described by means of two second-order tensors.
The latter represent, respectively, the average compressive stress on closed cracks and the frictional trac-
tions that limit sliding, assumed without dilatancy. The evolution of the internal variables is ruled by a
friction limit state coupled to a damage limit condition. The model is thus characterised by two parameters
and a damage toughness function to be identified by means of experimental tests.
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Fig. 22. Triaxial limit domain for high-strength concrete — data from Li and Ansari (1999).

In spite of the simplified approach, the model seems to represent the different response to tensile and
compressive stress states of brittle materials both in terms of stress—strain response and of limit strength
domains. The biaxial and triaxial strength domains fit rather well the experimental data and reproduce the
relevant features of the failure surfaces. Less accuracy is found for triaxial compressive stress states, where
on the compressive meridian the material strength is underestimated. This outcome, together with the
inability of the model to describe damage and rupture under high hydrostatic compression, is a conse-
quence of the basic inelastic mechanisms assumed for the model.

Finally, in spite of the simplifying assumption of isotropic damage, the present approach could be useful
for deriving anisotropic damage models including different tensile—compressive response, as in Brencich and
Gambarotta (1998).
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